
cREXX Progress
Update

The 32nd Annual Rexx Symposium

Adrian Sutherland • 8.11.2021 (Final)

cREXX Progress
Update

Reminder - what I said last year

cREXX Architecture and Status

cREXX in Action

How to Help?

Thanks!

Next Up - Rexx in the RexxLA Website
with Mark Hessling

Typical Bytecode
Optimisation

1. Threaded code
2. Super-instructions / inlining
3. Top-of-stack in a register
4. Scheduling the dispatch of the

next VM instruction

In all about 2x faster than classic
bytecode

We should be aiming for performance of
only 2-5 times slower than native code

NOTE - We could be talking about any language ...

char code[] = {
 ICONST_1, ICONST_2,
 IADD, ...
}
char *pc = code;

/* dispatch loop */
while(true) {
 switch(*pc++) {
 case ICONST_1: *++sp = 1; break;
 case ICONST_2: *++sp = 2; break;
 case IADD:
 sp[-1] += *sp; --sp; break;
 ...
}}

Pure Bytecode

void *code[] = {
 &&ICONST_1, &&ICONST_2,
 &&IADD, ...
}
void **pc = code;

/* implementations */
goto **(pc);

ICONST_1: pc++; *++sp = 1; goto **(pc);
ICONST_2: pc++; *++sp = 2; goto **(pc);
IADD:
 pc++; sp[-1] += *sp; --sp; goto **(pc);
...

Threaded Interpreter

REXX Assembler

This is where optimisations become
REXX specific ...

BREXX

● Stack Based
● Leaves work to the interpreter

CREXX

● Register Based
● Trying to handle REXXisms at

the low level

We need to get this right for LLVM ...

/* SIMPLE */
A = 10
B = 5
SAY A + B

NEWCLAUSE
CREATE "A"
PUSH 10
COPY
NEWCLAUSE
CREATE "B"
PUSH 5
COPY
NEWCLAUSE
PUSHTMP
LOAD "A"
LOAD "B"
ADD
SAY
NEWCLAUSE
IEXIT

BREXX

.def main: locals=3 {r1="A", r2="B"}
ILOAD r1,10

ILOAD r2,5

IADD r3,r1,r2

ISAY r3
HALT

CREXX

CREXX Variable

REXX Variable
Types

1. Rexx is typeless … and more than
that conceptually all variables
are strings

2. Rexx stems provide a flexible
and arbitrary index scheme

3. VALUE(), INTERPRET(), and
REXXSAA/EXECOMM all
require dynamic variable name
resolution

4. Performance requires compile
time resolution of variable
names and types, wherever
possible

Dynamic lookup
(tree/ hash)

Variable Status (what buffers
are uptodate)

Lazy updates
(only updates
the type being

set)

Copy on Write

Mapped to a
Register when

needed

String Buffer

Integer Buffer

Arbitrary Precision Number
Buffer

Date Buffer ...

REXX VM
Specific Memory

Allocation

Note: BREXX
has a single
shared buffer

Key

High Level Components & Implementation Leverageable Tools

CREXX

REXX
Lexer &
Parser

REXX
ByteCode
Interpreter

REXX IO

REXX
Variables

REXX
Strings

REXX BIF
Built in Functions

REXX
ADDRESS
External Calls

Leveraged

CREXX

C Library

POSIX

Linux.
Windows,Mac
OS, VM/370

Drivers

REXX
Compiler

REXX
MathsREXX

AST & Static
Optimisation

REXX
Assembly

Tools

ANTLR 3

PackCC

BREXX

Regina

ANTLE 3

REXX native
backends

(Compiled /
JIT)

ANTLE 3

BREXX

VMGEN

VMGEN

LLVM

BREXX

Regina

Regina LibBF

BREXX

Regina

BREXX

Regina

ShellSpawn

BREXX

Regina

BREXX

Regina

Custom

Custom

Custom

Custom

cREXX Architecture and Status

Phase 0

XX

Proof of Concept

Goal: Sustainability

Prove architectural concepts
and the ability for the project
to deliver by creating a
modern REXX implementation

Phase 1

Classic REXX

Goal: Standards compliancy

Formalise the implementation
by creating a high quality,
stable, performantand
compliant Classic REXX

Phase 2

Native Performance

Goal: Native Binaries

Integrate to the LLVM backend
to allow optimised native
binaries for multiple target
operating systems

Phase 3

REXX Modernisation

Goal: Contemporary REXX

Re-imagine REXX for new
users and workloads, and with
contemporary language
features

“Nearing”
completion

Starting Q1
2022

Key
Subset REXX

Level
Superset

REXX Level

REXX Level B

Base Subset REXX Language with features / grammar which are incompatible with REXX Level A.

Designed to be lightweight but with the required features to support cREXX components (e.g.
Component 0 - End2end Controller), but unconstrained by existing REXX language specifications.

Unlike Level A it will have the object orientation and type safety as core features.

REXX Level C

Classic REXX

REXX Level D

A REXX Compatible with Classic REXX but
with additional features, e.g. USE

In Project Scope Scope TBC

REXX Level E

OOREXX

REXX Level F

A REXX Compatible with OOREXX but with
additional features (features TBC)

REXX Level A

Base Subset REXX Language designed to be lightweight but with the required features to support cREXX
components (e.g. Component 0 - End2end Controller).

Example Scope items (to support superset languages)
● Integers only maths
● Access to environment variables
● ADDRESS COMMAND
● A base set of low-level functions

REXX Level L

A REXX Language for Computer Language
Engineering with advanced parsing, and
inbuilt support for language engineering
data structures

REXX Level G

A REXX Language for General Purpose
Use; in terms of scope this can be
considered to a modernised and unified
version of Classic and OO REXX. In sum,
an easy to use modern REXX.

Phases 0 to 2

Phase 3

Key
Subset REXX

Level
Superset

REXX Level

REXX Level B (Phase 0)

Base Subset REXX Language with features / grammar which are incompatible with REXX Level C.

Designed to be lightweight but with the required features to support cREXX components (e.g. Component 0 - End2end Controller), but unconstrained by existing REXX language specifications.
● Access to environment variables
● ADDRESS COMMAND
● A base set of low-level functions (via ASSEMBLE instruction)

It will have the object orientation and type safety as core features.

REXX Level C

Classic REXX

REXX Level D

A REXX Compatible with Classic REXX but
with additional features, e.g. USE

In Project Scope Scope TBC

REXX Level E

OOREXX

REXX Level F

A REXX Compatible with OOREXX but with
additional features (features TBC)

REXX Level L

A REXX Language for Computer Language
Engineering with advanced parsing, and
inbuilt support for language engineering
data structures

REXX Level G

A REXX Language for General Purpose
Use; in terms of scope this can be
considered to a modernised and unified
version of Classic and OO REXX. In sum,
an easy to use modern REXX.

Phases 0 to 2

Phase 3

REXX Internal
Representation

A. REXX
Source Code

1. REXX Parser

B. REXX
Abstract

Syntax Tree

2. REXX
Validator

C. REXX
Symbol Table

3. REXX
Optimiser

D. REXX
Assembler

Code

E. REXX
Bytecode

5. REXX
Assembler

8. REXX LLVM IR
Generator

LLVM Optimiser
and Assembler

6. REXX
Bytecode

Interpreter

4. REXX
Assembler
Generator

LLVM IR Code

Run

Native Binary

7. REXX
Runtime Library

Key
cREXX Phase 0/1

Component
cREXX Phase 2

Component
External

Component

Standardised
Interface

Data

0. cREXX End2end Controller

REXX Internal
Representation

A. REXX
Source Code

1. REXX Parser

B. REXX
Abstract

Syntax Tree

2. REXX
Validator

C. REXX
Symbol Table

3. REXX
Optimiser

D. REXX
Assembler

Code

E. REXX
Bytecode

5. REXX
Assembler

8. REXX LLVM IR
Generator

LLVM Optimiser
and Assembler

6. REXX
Bytecode

Interpreter

4. REXX
Assembler
Generator

LLVM IR Code

Run

Native Binary

7. REXX
Runtime Library

Key
Common across

REXX levels
Specific to a
REXX level

Platform Specific
Common across

REXX levels

0. cREXX End2end Controller

Key

1. REXX
Parser

2. REXX
Validator

3. REXX
Optimiser

5. REXX
Assembler

8. REXX
LLVM IR

Generator

6. REXX
Bytecode

Interpreter

4. REXX
Assembler
Generator

7. REXX
Runtime
Library

Component Mainly C
Implementation

0. cREXX
End2end

Controller

Phase 0

Phase 1

Phase 2

Phase 3

Mainly REXX
Implementation

RE2C &
Lemon

REXX
(Level B)

*REXX
(Level L)

C & ASM

*REXX
(Level L)

*REXX
(Level L)

*REXX
(Level L)

*REXX
(Level L)

C C C

* REXX Level L provides the required:
1. Extended PARSE to handle PEG Grammars
2. Native support of Language Engineering data structures (ASTs and Symbol Tables)

*REXX
(Level L)

REXX
(Level B)

C

RE2C,
Lemon, C

C

A. REXX
Source Code

1. REXX Parser

B. REXX
Abstract

Syntax Tree

Stage 1 - Lexer

State Machine Lexer

Requires State to control
Lexer behaviour to handle
REXX language flexibility

Stage 2 - Parser

LALR Parser

Look-Ahead (1 token)
Left-to-Right Parser

creating the Abstract
Syntax Tree (AST). Fast,

LALR limitations
overcome in stages 1 & 3

Stage 3 - AST

AST Walker

Walks the AST Tree to fix
any shortcomings of the

limited LALR Parser,
especially ensuring parse
error messages comply

with REXX standards

cREXX in Action

How to Help?

● Github - https://github.com/adesutherland/CREXX

● Contact myself or René

● Fortnightly Evening Zoom meetings

● Code - Test - Use - Feedback - or just lurk!

How to Help?

https://github.com/adesutherland/CREXX

Thanks to ...

● René Jansen - Our PM; for all his encouragement and
work on the built in functions

● Peter Jacob - Our microcode engineer!
● Mike Großmann - For rolling up his sleeves when needed
● Michael Beer, Bob Bolch and everyone else who comes

to our project meetings when they should be having a
beer!

Adrian Sutherland

● CTO of Jumar Technology, specialists in legacy
modernisation

● Journeyman Architect
● Keeps “hands-on” through numerous projects, from

Raspberry PI toys and Domain Specific Languages to
open architectural papers and other assets.

adrian@sutherlandonline.org

adrian.sutherland@jumar-technology.com

mailto:adrian@sutherlandonline.org
mailto:adrian.sutherland@jumar-technology.com

Questions

adrian@sutherlandonline.org
adrian.sutherland@jumar-technology.com

