
0

5.000.000

10.000.000

15.000.000

20.000.000

30 Years of CPS
The Rexx Clauses-per-second benchmark

René Jansen - RexxLA 2019

The Standard by MFC

Measures Clauses Per Second

A clause is ~ a line of instructions

History of measurements since 1989

Product of analysis of 1000’s of lines of real
applications

Multiplatform Classic Rexx

What does it do?

Two loops

One for calibration of an (almost) empty loop

One that does the work

Can specify # of averaging and measuring loops

Total execution should be 1 sec elapsed time for dependable results

Calibrating the empty loop

The timer loop

WE APPEAR TO HAVE NUMBERS STARTING 1983

0

5.000.000

10.000.000

15.000.000

20.000.000

212328461.03722909340582.1257.50031.0002.08936.15237.76857741.2242.2832.4706.7507.50012.8872.61312.08621.458107.44958592.3052.9884.6435.3876.4147.4269.69011.12424.80610.32715.40322.523853.2405.26314.15168.39337.906159.5694.5451.4311.7692.16120.00042.500143.508464.43955.00058.30061.50071.000132.00091.63340.24917.8572.6523.5134.4915.4567.0427.6758.0008.2749.88113.76114.19614.35716.48417.85718.51920.39222.11625.42432.50940.00040.541111950.48250.52952.20310.04513.93718.46535.07262.65564.90465.333102.09344.48552.78546.95073.62296.30644.00034.69979.92316.40010.135166.667187.500336.549392.32270.000
1.052.632
309.598452.625
1.175.088
163.637816.576836.727

5.567.929

13.357

3.561.2543.114.101

23.699

2.622.295

14.126.688

10.135.135

3.708.282

893.806
1.944.1081.381.171

3.481.894

14.766.746

6.192.687

140.000

6.675.567

116.713

2.452.740

4.863.9244.966.961

644.122

3.118.892

17.778.252

7.665.8168.287.671

5.074.854

542.68297.718

3.698.040

19.413.819

761.678

3.945.331
5.375.6715.394.973

20151992

But which is the ‘standard’ standard?

Every interpreter delivers one

All ever so slightly different

Brexx and ooRexx cannot run each other’s rexxcps

When fixed, they run their own cps faster than the other’s

Canonical version on speleotrove.com

http://speleotrove.com

Influence of compiler options

FP/DFP

ARCHLVL

Current numbers on x86_64 (Intel I9)

BREXX 21104425

ooRexx 13533448

Regina 8238630

Jaxx 9278788

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 4
On-line CPU(s) list: 0-3
Thread(s) per core: 2
Core(s) per socket: 2
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 142
Model name: Intel(R) Core(TM) i7-7567U CPU @ 3.50GHz
Stepping: 9
CPU MHz: 1000.053
CPU max MHz: 4000.0000
CPU min MHz: 400.0000
BogoMIPS: 7008.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 4096K
NUMA node0 CPU(s): 0-3
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm
constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg
fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb invpcid_single pti ssbd
ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1
xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp md_clear flush_l1d

Current numbers on ARM 64 (aarch64)

BREXX 2648138

ooRexx 1831838

Regina 2062977

rvjansen@jetson:~/data/brexx/src$ lscpu
Architecture: aarch64
Byte Order: Little Endian
CPU(s): 4
On-line CPU(s) list: 0-3
Thread(s) per core: 1
Core(s) per socket: 4
Socket(s): 1
Vendor ID: ARM
Model: 1
Model name: Cortex-A57
Stepping: r1p1
CPU max MHz: 1428.0000
CPU min MHz: 102.0000
BogoMIPS: 38.40
L1d cache: 32K
L1i cache: 48K
L2 cache: 2048K
Flags: fp asimd evtstrm aes pmull sha1 sha2 crc32

Current numbers on ARM 32 (armv7l)

BREXX 2816483

ooRexx 1914118

Regina 2043062

pi@kleene:~/apps $ lscpu
Architecture: armv7l
Byte Order: Little Endian
CPU(s): 4
On-line CPU(s) list: 0-3
Thread(s) per core: 1
Core(s) per socket: 4
Socket(s): 1
Vendor ID: ARM
Model: 3
Model name: Cortex-A72
Stepping: r0p3
CPU max MHz: 1500.0000
CPU min MHz: 600.0000
BogoMIPS: 108.00
Flags: half thumb fastmult vfp edsp neon vfpv3 tls vfpv4 idiva idivt vfpd32 lpae evtstrm crc32

Why is ooRexx slower?

Interpreter api

Stems are slower than array objects

Why is BREXX faster?

Limited numeric precision

Not an exact implementation of the standard

CRX

Written in Intel assembler (masm) for DOS and Windows, very fast

Its purpose was to verify the ANSI (ISO) standard

Parts of it generated from the grammar in that document

Made with knowledge of Intel processor cache and pipelines

Parallel Rexx

Maybe the future

Nvidia and Intel have competing ‘AI’ processors

CUDA in video cards exists for several years now, CUDA C++ can - with your
assistance, that is - parallellize selected loops to execute hundreds times faster,
consistent with the number of GPU’s available

To be faster we cannot really trust the CPUs itself

Experiments would be very interesting

NetRexx CPS
There never was one

Or was there?

rexxcps.nrx

From 1996, by Mike Cowlishaw, but never released until now

Optimizing compilers optimize a lot of code away, must make sense of the
numbers

In NetRexx 3.08, there is an experimental version released

Uses Nanotime instead of millisecs

Currently evaluated on different architectures to see what actually is
executed

NetRexx programs have a complex runtime

NetRexx is translated to Java source, which is compiled to bytecode, which is
interpreted (sometimes) but mostly compiled just-in-time to native code

Optimization takes place on different levels, each can throw out code

Reaches extremely high numbers

Current rexxcps.nrx

Aarch64 2,407E+15 2_407_464_380_676

IA 86_64 I9 1,1489E+16 11_488_524_444_376

IA 86_64 I7 9,861E+15 9_861_203_229_267

How do we see what
is executed?

List the generated java
List the generated bytecode
List the generated assembler

.nrx yields .java
We can verify a 1:1 relationship between the nrx and the java
sourcecode

.java yields .class
We can verify that all bytecode for the benchmark has been
generated

The Empty Averaging Loop in Java

Generated Assembler

With a special dll we can see what the HotSpot compiler generates as assembly

We can also see and influence which parts will be compiled and which parts
will be interpreted

Parallellism

Rexxcps.nrx also is a single tasking program

As java can also be parallellized, the future might hold change

Pipelines in NetRexx, for example are already multitasked over all available
processors

Example of Parallelism
2.067 seconds are spent with 249% cpu, which makes for an elapsed time of 0.87 seconds

