B

Totalising Tables and Streaming
Databases — Subclassing ooRexx

Jon Wolfers — Rexx developer since 1980s
& Came to ooRexx in 2001

¢ Following tutorial on RexxLa Wiki (Jan/Feb
2008) most questions were about subclassing

RIS

ooRexx subclasses

@ Subclasses inherit methods of parents
¢ Parents can be your classes or built-in

¢ Eventually all classes have built-in
parent

® Some tasks can be achieved quickly and
easily by subclassing the ooRexx built-in
classes

B

[wo case studies

¢ Building a totaliser class from the built
in table class

@ Building a class to handle Dbase data
from the stream class

B

ITwo case studies

¢ Concepts I want to introduce

2 the subclass keyword on the class directive
= the forward keyword
2 the unknown method

The Totaliser

@ Often when reporting one cursors
through data

R

[he Totaliser
Colour Qty Value

Garment
SOCKS
SHIRTS
SOCKS
SHIRTS
SHIRTS

RED 4
BLUE 2
BLUE 2
GREEN 3
RED 1

8

12.
2
.00

22

23

.50

o8
80

99

B

Initialise counters
sort data by section
last section = "'
Do line over data
parse data ..
if section \= 1ast_sectian
then do
if last section \= "'
then output section totals
initialise section counters
output section header
end
increment counters
output row
End
OQutput last section total
Output grand totals

lhe Totaliser

¢ It would help to have an object that:
@ Initialised the counters automatically
 Allowed one to add quantities
@ Allowed one to retrieve totals

22 As a bonus provided other statistics (grand
totals, percentages, mins and maxes ...)

The Totaliser

¢ The built in table class

2 Can contain various totals BUT
e Uninitialised indexes have .nil value

* There is no method to add a quantity to a held
value

B

The Totaliser

& Lets subclass the Table Class

iy

w#|::class totaliser subclass table public

lhe Totaliser

& Lets subclass the Table Class

:-:glass totaliser subclass table public

2 This is a directive telling ooRexx that we
are defining a class.

@ i:requires directives must appear before all
other directives

The Totaliser

& Lets subclass the Table Class

$|::class @li@ subclass table public

 This is the nhame we are giving our new
class

The Totaliser

> Lets subclass the Table Class

L

i

*|::class totaliser @ass tablepublic

2 These two short words give all the
methods of the table class to our class

The Totaliser

> Lets subclass the Table Class
s [- Mo,
*|::class totaliser subclass table@blf/

L

i

2 Public means that this class can be
accessed from other scripts using the
::Requires directive.

B

lhe Totaliser

::attribute grandTotal

@ The ::attribute directive creates get and
set methods for a variable with object
scope.

= If there is a method of the same name in
the superclass this will override it

= As it is this adds the grandtotal and
grandtotal= methods to our class.

R

lhe Totaliser

" method i@
\C___:_____

22 When a new instance of a class is created
the init message is sent to it.

22 If no such method exists in our class then
the chain of superclasses is searched till
ohe is found.

@ We want our init method to run, but first
we need the table class's init method to
run

B

The Totaliser

::method init

iiig;;%EE:blass (super) continue

= The forward keyword sends on the
message that triggered this method

B

lhe Totaliser

::method init

forwardi.class (super) -continue

= The forward keyword sends on the
message that triggered this method

@ class (super) starts the search for a target
method at the immediate superclass

R

lhe Totaliser

::method 1init
forward class (super)@

= The forward keyword sends on the
message that triggered this method

@ class (super) starts the search for a target
method at the immediate superclass

z continue specifies that after the action
initiated by the message forwarding is
complete, continue with this method

R

lhe Totaliser

::method 1init
forward class (super) continue

Cgéiizérandtmtag:g:::}

2= Now we can initialise our attribute

2 unlnitialised variables in rexx take the
value of their name in uppercase — which
causes an error when you add a number to

them!

B

The Totaliser

¢ We need method to accumulate values

2 Table class has put method
22 We will create a nhew method called add

B

The Totaliser

 :method add
expose grandTotal
e *

¢ Grand total is an attribute

22 We could access it via messages or expose
it

B

The Totaliser

 :method add

ex randTotal
¢ use instead of parse passes objects not
strings
2 strict means we will get error if args
missing

B

The Totaliser

: :method add
expose grandTotal

use strict arg amt.index

atatype(amt, 'n'")

e

then raise syntax array ,
H“T*ﬁmmuﬂEEEEﬁiﬂi must be a numhii;FEEEﬂgLfame’f

% We should check that what we are

totalising is numeric

R

lhe Totaliser

: :method add
expose grandTotal

use strict arg amt, index

if \self<hasIndex(index) then self{put) ,index)

& If we haven't seen this index before we
initialise a new totaliser

& As the totaliser class does not have
these methods, the messages will be
forwarded to the superclass (table)

