
"RexxScript" – Rexx Scripts Hosted and

Evaluated by Java (Package javax.script)
Rony G. Flatscher (Rony.Flatscher@wu.ac.at), WU Vienna

"The 2017 International Rexx Symposium", Amsterdam, The Netherlands
April 9th – 12th, 2017

Abstract. The latest version of BSF4ooRexx (a Rexx-Java bridge) implements a Rexx
script engine ("RexxScript") according to the specifications laid out in the Java package
javax.script. This article explains the core concepts of javax.script for hosting and
evaluating script programs from Java and introduces the new "RexxScript" implementation
with features that are supposed to ease devising and debugging "Rexx scripts" for Rexx
and Java programmers alike. Working stand-alone nutshell examples will demonstrate the
new features and will also showcase the available possibilities to interact with the Java
supplied ScriptContext from the evaluated Rexx scripts hosted by Java programs.

1 Introduction

The Java specification request group 223 ("JSR-223") [1] was formed in 2003 to

create a Java package for scripting by eventually defining the Java package

javax.script in the course of three years.1 This package was introduced with Java 6

in December 2006 and standardizes how Java interacts with scripting languages

of any kind.2

The BSF4ooRexx package [4] implements a full functional, bidirectional bridge

between ooRexx [5] and Java [6] that allows on the one hand ooRexx to interact

with Java objects and on the other hand allows Java to interact with ooRexx

objects and run ooRexx programs. BSF4ooRexx is based on the Apache Software

Foundation's "Bean Scripting Framework (BSF)" [7] that predates the JSR-223

specifications by almost a decade.

With the advent of ooRexx 4.03 in 2009 [8] the scripting language got a new

kernel with a comprehensive set of native APIs modeled after Java's JNI [10]. Over

the course of the next years BSF4Rexx was rewritten to take advantage of the new

kernel and has been renamed to "BSF4ooRexx" to indicate that the new features

1 The author served as an expert in the JSR-223 group. The downloadable JSR-223 specifications
can be found at [2].

2 The Java 1.8/8 documentation for the package javax.script can be found in [3].

3 At the time of this writing beta versions of ooRexx 5.0 became available for download at [9].

2017-10-12 13:28:15 1/19

are only available with ooRexx 4 and higher ([11]4, [12]5). As one of the results

this ooRexx to Java bridge has become able to allow for implementing abstract

Java classes, Java interface classes and (abstract) Java methods in ooRexx, such

that Java method invocations will transparently cause appropriate ooRexx

messages to be sent to the proxy ooRexx objects.

In the fall of 2016 work on BSF4ooRexx begun with the goal to make ooRexx

available to Java via the javax.script package. This would allow Java programmers

accustomed to JSR-223 to employ ooRexx for their scripting purpose, without a

need to learn the Apache BSF package as is a prerequisite for using BSF4ooRexx

from the Java side. In addition any existing Java application that allows the users

for identifying a scripting language merely by its name would gain the support for

Rexx and ooRexx scripts by merely installing the BSF4ooRexx package!6

This article will first give an overview of the most important concepts and classes

of the javax.script package, which then is followed by the introduction of the

BSF4ooRexx implementation called "RexxScript" together with the newly

introduced "RexxScript annotations".

All the examples in this article will demonstrate and explain how to put the

javax.script and RexxScript infrastructure to work for the benefits of Java and/or

ooRexx programmers.

4 [11] discusses some of the shortcomings of BSF4Rexx that were due to the industry standard
Rexx SAA (IBM's System Application Architecture) APIs from the 80's. With the new APIs in the
ooRexx 4.0 kernel it became possible to implement Rexx proxy objects for Java, real-time
handling of Java events, enabling the implementation of abstract Java methods with Rexx
methods, communicating Rexx conditions to Java and last, but not least, to allow Rexx to throw
specific Java exceptions. As these new features depend on the new ooRexx 4.0, BSF4Rexx from
then on was renamed to BSF4ooRexx.

5 [12] documents the new possibilities that BSF4ooRexx introduced by 2012, namely allowing the
configuration of Rexx interpreter instances for the first time, including the ability to configure
and implement Rexx exit handlers and Rexx command handlers in Java. The appendix takes
advantage of BSF4ooRexx "omnipotency" for ooRexx camouflaging Java as ooRexx: it
demonstrates how this infrastructure allows the implementation of Rexx exits and Rexx
command handlers even in pure Rexx itself!

6 One such example is JavaFX which allows for using any script code in FXML files by merely
stating with an XML process instruction the name of the script engine to use when code in
external files or in event handlers has to be executed from that FXML file.

2017-10-12 13:28:15 2/19

2 The javax.script Package

This section introduces briefly the purpose and how the Java classes defined in

the javax.script7 package interact in order to become able to understand the Java

script framework if one wishes to exploit it. A service provider for a script engine

must implement the Java interface classes javax.script.ScriptEngineFactory8 and

javax.script.ScriptEngine9 for evaluating (executing) script code.

A ScriptEngine maintains a ScriptContext that manages the environment in which

the script gets evaluated and which uses a numerically indexed collection of

Bindings which each represent a collection of name-value pairs ("attributes") that a

script should be able to access. SimpleScriptContext10 implements the Java

interface ScriptContext which in turn uses the Java class SimpleBindings which

implements the Java interface Bindings.

The ScriptEngineManager maintains all available script engines (using the Java

service provider mechanism11) and allows for maintaining a Bindings that is to be

used by all script engines it created12.

Code 1 demonstrates how a Java program uses the ScriptEngineManager to load

the JavaScript engine and then uses it to evaluate (execute, run) a simple

JavaScript program which will output the string: Hello world from JavaScript!.

The Java host program is free to add any information to any available Bindings of

the ScriptContext to use for evaluating a script. For each invocation (evaluation) of

a script the Java host should supply at least the following entries in the

ScriptContext's ENGINE_SCOPE (a constant number with the value 100) Bindings, if

possible:

7 This article will omit the package name javax.script to ease reading.

8 This class holds information about the script engine and with the method getScriptEngine
returns a ScriptEngine implementation that will allow for evaluating (executing) script code.

9 Implementing a ScriptEngine is eased considerably, if one merely extends the class Abstract-
ScriptEngine.

10This implementation uses two Bindings, one with the numeric index 100 (ENGINE_SCOPE),
which maintains attributes (name-value pairs) for the current script evaluation, and one with the
numeric index 200 (GLOBAL_SCOPE), which maintains attributes that are meant to be shared
among all scripts that get executed by a Java host program. It would be possible to supply an
own implementation of the Java ScriptContext interface, which might allow for more than the
two default Bindings ENGINE_SCOPE and GLOBAL_SCOPE.

11A script engine implementation needs to supply the fully qualified name of its ScriptEngine-
Factory in the file META-INF/services/javax.script.ScriptEngineFactory of its package.

12This Bindings is indexed with the numeric value 200 (GLOBAL_SCOPE) in the ScriptContext.

2017-10-12 13:28:15 3/19

• in the case of supplying argument(s) to the script, a Java Array object of

type Object can be created and should be stored under the name

"javax.script.argv"13,

• if the script was read from a file name, then the Java host should supply

that name (a String) with the name "javax.script.filename"14.

The Java scripting framework defines two optional interface classes, Compilable

and Invocable. The optional Compilable interface defines two compile methods to

allow compilation of scripts into CompiledScript objects that can be (re-)used to

evaluate (run, execute) compiled scripts and to get access to their script engine.

The optional Invocable interface defines a method getInterface which expects the

resulting object to implement the methods of the supplied Java class object, a

method invokeFunction that allows to run top-level routines (procedures,

functions) in the ScriptEngine and invokeMethod that allows to execute methods

in a script object.

13This is a standardized name for which the class ScriptEngine constant named ARGV defines the
String value "javax.script.argv".

14This is a standardized name for which the class ScriptEngine constant named FILENAME defines
the String value "javax.script.filename".

2017-10-12 13:28:15 4/19

import javax.script.*;
public class Test_00_js
{
 public static void main (String args[])
 {
 ScriptEngineManager sem=new ScriptEngineManager();
 ScriptEngine se =sem.getEngineByName("JavaScript");
 try
 {
 se.eval("print (\"Hello world from JavaScript!\");");
 }
 catch (ScriptException sExc)
 {
 System.err.println(sExc);
 }
 }
}

Code 1: A Java program using the JavaScript engine.

3 The RexxScript Implementation

BSF4ooRexx defines a Rexx script package org.rexxla.bsf.engines.rexx.jsr22315 –

also known as "RexxScript" package" – which contains the implementations of a

Rexx script factory named RexxScriptFactory, a Rexx script engine named

RexxScriptEngine and a Rexx specific implementation of CompiledScript, the

RexxCompiledScript class. The RexxScriptFactory class is made known via the Java

service provider interface conventions11, such that after BSF4ooRexx got installed

the RexxScriptEngine can be used transparently by Java programmers. Code 2

demonstrates how a Java host program uses the ScriptEngineManager to load the

Rexx engine and then uses it to evaluate (execute, run) a simple Rexx program

which will output the string: REXXout>Hello world from Rexx!16.

In addition to what the ScriptEngine interface defines, the RexxScriptEngine

implements among other things the following functionality:

• the optional interface Compilable, which allows for tokenizing Rexx

programs/scripts and reuse them as CompiledScripts, the public method

getCurrentScript returns the latest compiled (tokenized) Rexx script17,

15The BSF4ooRexx Javadocs document all BSF4ooRexx Java classes.

16The prefix "REXXout>" is supplied by the RexxScriptEngine whenever a Rexx program uses the
SAY keyword statement in order to distinguish Rexx output from any other output from a Java
program. This allows one to distinguish the output from Java and Rexx programs.

17The RexxScriptEngine caches the last evaluated (executed) Rexx program or script.

2017-10-12 13:28:15 5/19

import javax.script.*;
public class Test_00_rex
{
 public static void main (String args[])
 {
 ScriptEngineManager sem=new ScriptEngineManager();
 ScriptEngine se =sem.getEngineByName("Rexx");
 try
 {
 se.eval("say \"Hello world from Rexx!\"");
 }
 catch (ScriptException sExc)
 {
 System.err.println(sExc);
 }
 }
}

Code 2: A Java program using the RexxScript engine.

• the optional interface Invocable, which allows for using Rexx objects for

carrying out the abstract Java methods defined in Java interface classes18,

running public Rexx routines19 and sending Rexx objects messages20 from

Java.

• Redirection of the Rexx .input, .output, .error , .debuginput and

.traceoutput monitors to the Java input Reader, output Writer and error

Writer objects as supplied via the current ScriptContext. This allows Rexx

output to be loggable along with the Java output and gets controlled by the

static boolean field bRedirectStandardFiles.

• In order to ease spotting Rexx input or output the RexxScriptEngine will

prefix any Rexx input or output with the strings "REXXin?>" (.input),

"REXXout>" (.output), "REXXerr>" (.error), "REXXdbgIn?>" (.debuginput) and

"REXXtrc>" (.traceouptut) to ease spotting Rexx output and the kind of

interaction with the Java Reader and Writer objects for debugging and

analyzing purposes.

The RexxCompiledScript class extends CompiledScript and implements the

Invocable interface and in addition adds the following public methods:

• getFileName: returns the filename,

• getScriptSource: returns the source code as a String,

• getEditedScriptSource: returns the source code as a String that was

tokenized and gets actually executed. This String is different to what

getScriptSource returns, if RexxScript annotations (see below) are

18 Invocable restricts the getInterface method to work for a single Java interface class. BSF4ooRexx
by default allows any number of Java interface classes to be implemented in a single ooRexx
class. Cf. BSF4ooRexx' external Rexx function BSFCreateRexxProxy.

19The RexxScript engine by default behaves differently compared to ooRexx: the RexxEngine will
collect the Rexx package of an evaluated Rexx scripts and add that package to the next Rexx
script to evaluate (execute). This way a RexxEngine – and the scripts it runs – will gain access to
all public routines and public classes that have been created in its lifetime when evaluating
Rexx scripts and programs. This behavior matches the behavior of quite many script engines,
especially those that are deployed in the context of HTML. (ooRexx never adds packages
automatically to all Rexx programs, a Rexx programmer must do that by explicitly using the
::REQUIRES directive.)

20BSF4ooRexx allows Java programmers to wrap Rexx objects as Java RexxProxy objects and send
them any Rexx messages they have a need for from Java. If a Rexx script returns Rexx objects
as a result to Java, then BSF4ooRexx will wrap it up as a Java RexxProxy object (package
org.rexxla.bsf.engines.rexx). [11]

2017-10-12 13:28:15 6/19

embedded in the original Rexx script.

3.1 Evaluating Rexx Scripts with javax.script

If a Rexx script gets evaluated (executed, run), then BSF4ooRexx will carry out all

necessary steps to do so. As the invocation of Rexx scripts occurs from Java,

BSF4ooRexx will always supply a trailing slot argument of the Rexx type (class)

Slot.Argument21, which subclasses the ooRexx Directory class.

In the case of running Rexx scripts via the RexxScriptEngine, the slot argument

will have an entry named SCRIPTCONTEXT which allows one to fetch the current

ScriptContext Java object from the invoked Rexx executable. This way it becomes

possible to interact with the Java ScriptContext directly from Rexx, allowing the

Rexx programmer to directly fetch attributes from the ScriptContext Bindings,

change, add or delete them.22

In the case that there are many entries in the ScriptContext that should be made

available as context Rexx variables in the scripts, the RexxScriptEngine

implementation introduces the possibility of defining "RexxScript annotations". A

RexxScript annotation is enclosed in a Rexx block comment which starts and ends

in the same line and contains one of the strings "@get(...)", "@set(...)" or

"@showsource". The @get and @set annotations expect blank delimited23 names

within their parentheses that allow to address attributes in the ScriptContext's

Bindings that are reflected in the Rexx script. The @get annotation will fetch the

listed attributes from the current ScriptContext and create Rexx context variables

of the same name, the @set annotation will cause the values of Rexx context

variables to be written back into their corresponding attributes in the current

21A Rexx programmer therefore can always test the last argument whether it got added by
BSF4ooRexx as a slot argument by sending it the message isA(.slot.Argument).

22Quite a few Java ScriptEngine implementations automatically push the ScriptContext attributes
into the scripts by creating local context variables by the same name and push value changes
back to their corresponding attributes into the ScriptContext Bindings. This may incur very
subtle problems, e.g. in cases where scripts use local variable names that over the life time of
such scripts may get all of a sudden overwritten by the Java host If additional attributes get
added that happen to have the same names as context variables in the evaluated scripts, these
may get overwritten without notice, The RexxScriptEngine does not automatically create context
variables in Rexx, scripts but rather has the Rexx programmer decide which entries to use as
context variables in their scripts, which never will allow unexpected name clashes.

23Should the name of a ScriptContext Bindings attribute contain blanks, then one needs to
enquote the name in double or single quotes.

2017-10-12 13:28:15 7/19

ScriptContext Bindings. The @showsource24 annotation will cause the

RexxScriptEngine to display the edited Rexx script source code to be shown on

.output, such that a Rexx programmer becomes able to see how the @get and

@set annotations changed the Rexx script source.25

Before the Rexx script gets executed the filename of the Rexx script will be set

from the entry javax.script.filename26 (ScriptEngine.FILENAME) in the

ENGINE_SCOPE Bindings of the ScriptContext and if there is an entry named

javax.script.argv (ScriptEngine.ARGV) in the ENGINE_SCOPE Bindings of the

ScriptContext then this Java array object will be used to directly supply the Rexx

scripts the arguments. Therefore Rexx programs invoked this way can directly

fetch Java host arguments with the USE ARG keyword statement.

3.2 Invoking a Rexx Script from a Java Host

The first Java example evaluates (executes, runs) the Rexx script shown in code 3

below and which gets stored under the name "test_rexx_01.rex" in the same

directory as the Java host program. It will show the result of the PARSE SOURCE

keyword statement which will include the defined filename of the Rexx script. In

addition it will iterate over all received arguments and show them. If an argument

(always the last one) is of the Rexx type Slot.Argument27, then it will iterate over

24The complete RexxScript annotation to embed into a Rexx script would be: /*@showsource*/

25Rexx script annotations depend on the presence of a slot argument.

26The Rexx PARSE SOURCE keyword statement allows for fetching this filename value.

27The Rexx class Slot.Argument gets defined by BSF4ooRexx and subclasses the Rexx class
Directory. This way a Rexx programmer can always determine whether the last argument is a
slot argument (appended by BSF4ooRexx) or not by sending it the message isA(.slot.Argument).

2017-10-12 13:28:15 8/19

parse source s
say "parse source: ["s"]"
say

say "received" arg() "arguments:"
do i=1 to arg()
 val=arg(i) -- get value
 say " arg #" i": ["val"]"
 if val~isA(.slot.Argument) then -- .slot.Argument is a subclass of .Directory
 do
 say " a directory with the following entries:"
 loop idx over val~allIndexes~sort
 say " idx=["idx"] -> item=["val[idx]"]"
 end
 end
end

Code 3: "test_rexx_01.rex": Dump received arguments.

its content.

The Java program "Test_01.java" in code 4 above sets the filename of the Rexx

program (script) to "test_rexx_01.rex" using the ScriptContext's ENGINE_SCOPE

Bindings. It then evaluates (executes, runs) the Rexx program without arguments.

The first six lines in the output depicted in output 1 below stem from this first

evaluation (execution) of the Rexx script.

Then the Java program outputs a blank line, an informative message about

reusing the current Rexx script and another blank line. It then defines an entry in

the ScriptContext's engine Bindings with the name "javax.script.argv" for the Java

Array of type Object that gets supplied to the script. The content of this Array

object will be used by the RexxScriptEngine to supply the arguments directly to

the invoked Rexx script. The Java program then requests the current Rexx script

2017-10-12 13:28:15 9/19

import javax.script.*;
import java.io.FileReader;
import org.rexxla.bsf.engines.rexx.jsr223.*;

public class Test_01 // demo evaluating a Rexx script
{
 public static void main (String args[])
 {
 ScriptEngineManager manager = new ScriptEngineManager();
 RexxScriptEngine rse=(RexxScriptEngine) manager.getEngineByName("Rexx");
 try
 {
 String filename="test_rexx_01.rex"; // define the filename
 // add the filename to the engine's SimpleBindings
 ScriptContext sc=rse.getContext(); // get the default ScriptContext
 sc.setAttribute(ScriptEngine.FILENAME,filename,ScriptContext.ENGINE_SCOPE);
 rse.eval(new FileReader(filename)); // now let us execute the Rexx script

 System.out.println("\n... about to reuse the last used Rexx script ...\n");

 // add arguments for the script to the ENGINE_SCOPE bindings
 sc.setAttribute(ScriptEngine.ARGV,
 new Object[] {"one", null, java.util.Calendar.getInstance()},
 ScriptContext.ENGINE_SCOPE);
 // the RexxScriptEngine always compiles the last script and
 // makes it available with the getCurrentScript() method
 rse.getCurrentScript().eval(); // now let us re-execute the Rexx script
 }
 catch (Exception exc)
 {
 System.err.println(exc);
 System.exit(-1);
 }
 }
}

Code 4: "Test_01.java": Java host program to run "test_rexx_01.rex" twice.

(the last one the RexxScriptEngine evaluated) and re-evaluates it.

The last nine lines in the output depicted in output 1 above stem from this second

evaluation of the Rexx script.

It is maybe interesting to note that in output 1 above the Rexx output can be

easily distinguished from the Java output, as it gets prefixed with the string

"REXXout>".

3.3 Interacting with a ScriptContext from Rexx

The purpose of this example is to demonstrate how a Rexx program,

"test_rexx_02.rex", can interact with the ScriptContext fetched from the slot

argument that BSF4ooRexx supplies.

The Java program "Test_02.java" is given in code 6 below and comparing it to

"Test_01.java" in code 4 above the only change lies in the name of the Rexx file to

"test_rexx_02.rex" evaluate (execute). The logic of the Java host program is

unchanged, such that it evaluates the script twice, once without and once with

arguments. Hence the explanations of the Java program in section 3.2 above

apply accordingly.

"test_rexx_02.rex" is depicted in code 5 below and does the following:

• the PARSE SOURCE keyword instruction retrieves among other things the

filename as set in the Java host program,

2017-10-12 13:28:15 10/19

REXXout>parse source: [WindowsNT SUBROUTINE test_rexx_01.rex]
REXXout>
REXXout>received 1 arguments:
REXXout> arg # 1: [a Slot.Argument]
REXXout> a directory with the following entries:
REXXout> idx=[SCRIPTCONTEXT] -> item=[javax.script.SimpleScriptContext@308db1]

... about to reuse the last used Rexx script ...

REXXout>parse source: [WindowsNT SUBROUTINE test_rexx_01.rex]
REXXout>
REXXout>received 4 arguments:
REXXout> arg # 1: [one]
REXXout> arg # 2: [The NIL object]
REXXout> arg # 3: [java.util.GregorianCalendar@12c9b19]
REXXout> arg # 4: [a Slot.Argument]
REXXout> a directory with the following entries:
REXXout> idx=[SCRIPTCONTEXT] -> item=[javax.script.SimpleScriptContext@308db1]

Output 1: Output of executing "java Java_01".

• it fetches the last argument using the Rexx built-in function ARG28 and

retrieves its entry named SCRIPTCONTEXT, which then is used to query the

values of the ScriptContext constant fields named ENGINE_SCOPE (the

numeric value 100) and GLOBAL_SCOPE (the numeric value 200),

• it imports the Java class ScriptEngine and uses it to query the values of the

ScriptEngine constant fields FILENAME ("javax.script.filename") and ARGV

("javax.script.argv"),

• it then demonstrates how to use the ScriptContext's getAttribute and

28The built-in function ARG() returns the number of arguments which is used in the outer ARG
function to index and retrieve the last argument, which is the slot argument object supplied by
BSF4ooRexx, hence the statement: slotDir=arg(arg()).

2017-10-12 13:28:15 11/19

parse source s
say "parse source: ["s"]"
say
-- demonstrate how to access and use the ScriptContext
slotDir=arg(arg()) -- last argument is a directory containing "SCRIPTCONTEXT"
sc=slotDir~scriptContext -- fetch the ScriptContext object
say "ScriptContext field: ENGINE_SCOPE:" pp(sc~engine_scope)
say "ScriptContext field: GLOBAL_SCOPE:" pp(sc~global_scope)
say

-- import the Java class that defines some Constants like FILENAME, ARGV ...
seClz=bsf.importClass("javax.script.ScriptEngine")
say "ScriptEngine field: FILENAME="pp(seClz~filename)
say "ScriptEngine field: ARGV ="pp(seClz~argv)
say

key=seClz~FILENAME -- get string value for FILENAME entry in Bindings
say "value of ScriptEngine static field named ""FILENAME"":" pp(key)
say " fetch filename from ScriptContext :" pp(sc~getAttribute(key))
say " fetch scope (engine or global) from Scriptcontext:" pp(sc~getAttributesScope(key))
say

key=seClz~ARGV -- get string value for ARGV entry in Bindings
say "value of ScriptEngine static field named ""ARGV"" :" pp(key)
say " fetch filename from ScriptContext :" pp(sc~getAttribute(key))
say " fetch scope (engine or global) from Scriptcontext:" pp(sc~getAttributesScope(key))

say "---"
say "received" arg() "arguments:"
do i=1 to arg()
 val=arg(i)
 str=" arg("i")=["
 if val~isA(.bsf) then str=str || val~toString"]"
 else str=str || val"]"
 say str
 if val~isA(.slot.Argument) then
 do
 say " a directory with the following entries:"
 loop idx over val~allIndexes~sort
 say " idx=["idx"] -> item=["val[idx]"]"
 end
 end
end

Code 5: "test_rexx_02.rex": Interact with ScriptContext and show arguments.

getAttributesScope using the values "javax.script.filename" and

"javax.script.argv":

◦ getAttributesScope("javax.script.filename") returns the numeric value

100, which indicates that it is stored in the ENGINE_SCOPE Bindings of

the current ScriptContext.

◦ The next statement, getAttributesScope("javax.script.argv"), will return

-1 in the first run29 (not present in any Bindings of the current

ScriptContext), but 100 (ENGINE_SCOPE Bindings in the ScriptContext) in

the second run of the script, as the Java host program will have placed

this entry in the ScriptContext ENGINE_SCOPE Bindings before the second

run!

29Cf. Output 2 below.

2017-10-12 13:28:15 12/19

import javax.script.*;
import java.io.FileReader;
import org.rexxla.bsf.engines.rexx.jsr223.*;

public class Test_02 // demo evaluating a Rexx script
{
 public static void main (String args[])
 {
 ScriptEngineManager manager = new ScriptEngineManager();
 RexxScriptEngine rse=(RexxScriptEngine) manager.getEngineByName("Rexx");
 try
 {
 String filename="test_rexx_02.rex"; // define the filename
 // add the filename to the engine's SimpleBindings
 ScriptContext sc=rse.getContext(); // get the default ScriptContext
 sc.setAttribute(ScriptEngine.FILENAME,filename,ScriptContext.ENGINE_SCOPE);
 rse.eval(new FileReader(filename)); // now let us execute the Rexx script

 System.out.println("\n... about to reuse the last used Rexx script ...\n");

 // add arguments for the script to the ENGINE_SCOPE bindings
 sc.setAttribute(ScriptEngine.ARGV,
 new Object[] {"one", null, java.util.Calendar.getInstance()},
 ScriptContext.ENGINE_SCOPE);
 // the RexxScriptEngine always compiles the last script and
 // makes it available with the getCurrentScript() method
 rse.getCurrentScript().eval(); // now let us re-execute the Rexx script
 }
 catch (Exception exc)
 {
 System.err.println(exc);
 System.exit(-1);
 }
 }
}

Code 6: "Test_02.java": Java host program to run "test_rexx_02.rex" twice.

• The remaining code lists the received arguments and in the case of a

Directory object will list all entries ordered by key. The last argument in

RexxScript invoked Rexx routines and methods will be the slot argument

Analyzing the output of the two runs in output 2 above, the same Rexx script

2017-10-12 13:28:15 13/19

REXXout>parse source: [WindowsNT SUBROUTINE test_rexx_02.rex]
REXXout>
REXXout>ScriptContext field: ENGINE_SCOPE: [100]
REXXout>ScriptContext field: GLOBAL_SCOPE: [200]
REXXout>
REXXout>ScriptEngine field: FILENAME=[javax.script.filename]
REXXout>ScriptEngine field: ARGV =[javax.script.argv]
REXXout>
REXXout>value of ScriptEngine static field named "FILENAME": [javax.script.filename]
REXXout> fetch filename from ScriptContext : [test_rexx_02.rex]
REXXout> fetch scope (engine or global) from Scriptcontext: [100]
REXXout>
REXXout>value of ScriptEngine static field named "ARGV" : [javax.script.argv]
REXXout> fetch filename from ScriptContext : [The NIL object]
REXXout> fetch scope (engine or global) from Scriptcontext: [-1]
REXXout>---
REXXout>received 1 arguments:
REXXout> arg(1)=[a Slot.Argument]
REXXout> a directory with the following entries:
REXXout> idx=[SCRIPTCONTEXT] -> item=[javax.script.SimpleScriptContext@308db1]

... about to reuse the last used Rexx script ...

REXXout>parse source: [WindowsNT SUBROUTINE test_rexx_02.rex]
REXXout>
REXXout>ScriptContext field: ENGINE_SCOPE: [100]
REXXout>ScriptContext field: GLOBAL_SCOPE: [200]
REXXout>
REXXout>ScriptEngine field: FILENAME=[javax.script.filename]
REXXout>ScriptEngine field: ARGV =[javax.script.argv]
REXXout>
REXXout>value of ScriptEngine static field named "FILENAME": [javax.script.filename]
REXXout> fetch filename from ScriptContext : [test_rexx_02.rex]
REXXout> fetch scope (engine or global) from Scriptcontext: [100]
REXXout>
REXXout>value of ScriptEngine static field named "ARGV" : [javax.script.argv]
REXXout> fetch filename from ScriptContext : [[Ljava.lang.Object;@16f27d]
REXXout> fetch scope (engine or global) from Scriptcontext: [100]
REXXout>---
REXXout>received 4 arguments:
REXXout> arg(1)=[one]
REXXout> arg(2)=[The NIL object]
REXXout> arg(3)=[java.util.GregorianCalendar[time=1507552521096,areFieldsSet=true,
areAllFieldsSet=true,lenient=true,zone=sun.util.calendar.ZoneInfo[id="Europe/Berlin",
offset=3600000,dstSavings=3600000,useDaylight=true,transitions=143,lastRule=
java.util.SimpleTimeZone[id=Europe/Berlin,offset=3600000,dstSavings=3600000,useDaylight=
true,startYear=0,startMode=2,startMonth=2,startDay=1,startDayOfWeek=1,startTime=3600000,
startTimeMode=2,endMode=2,endMonth=9,endDay=1,endDayOfWeek=1,endTime=3600000,endTimeMode=
2]],firstDayOfWeek=2,minimalDaysInFirstWeek=4,ERA=1,YEAR=2017,MONTH=9,WEEK_OF_YEAR=41,
WEEK_OF_MONTH=2,DAY_OF_MONTH=9,DAY_OF_YEAR=282,DAY_OF_WEEK=2,DAY_OF_WEEK_IN_MONTH=2,
AM_PM=1,HOUR=2, HOUR_OF_DAY=14,MINUTE=35,SECOND=21,MILLISECOND=96,ZONE_OFFSET=3600000,
DST_OFFSET=3600000]]
REXXout> arg(4)=[a Slot.Argument]
REXXout> a directory with the following entries:
REXXout> idx=[SCRIPTCONTEXT] -> item=[javax.script.SimpleScriptContext@308db1]

Output 2: Output of running "java Java_02".

"test_rexx_02.rex" hosted by the Java program "Test_02.java" yields quite different

outputs, depending on the presence of arguments supplied by the Java host

program using a Java Array attribute named ScriptEngine.ARGV and stored in the

ENGINE_SCOPE Bindings of the ScriptContext.

3.4 Rexx Script Annotations

The previous section demonstrated how a Rexx program can interact with the

current ScriptContext supplied by the Java host program. This knowledge allows a

Rexx programmer to fetch any attribute from any Bindings of a ScriptContext and

also change, delete or add attributes to any of the ScriptContext Bindings.

As one can expect that Rexx scripts usually will need to use some Java host

supplied attributes in one of the ScriptContext Bindings and possibly update such

attributes, Rexx script annotations30 have been implemented in RexxScriptEngine

to make it easy to incorporate such attributes as Rexx context variables and

update the Bindings attributes directly from Rexx context variables.

The Rexx program "test_rexx_03.rex" in code 7 below is structured as follows:

• In the prolog31 code the attributes named d1, d2 and sum get fetched from

the ScriptContext using its getAttribute method and assigned to Rexx

variables of the same name, which then get merely displayed.

• In the public routine named one, a get RexxScript annotation

("/*@get(d1 d2 sum)*/") is used to fetch the attributes d1, d2 and sum and

create Rexx context variables from them which can be immediately used in

the routine. First the values are displayed, then d1 and d2 get random

values from Rexx and the sum variable gets recalculated. All three Rexx

variable then get shown again with their new values, however the attributes

in the ScriptContext Bindings do not get changed. Upon return the Java host

would still access the original attribute values from the ScriptContext

Bindings.

• The public routine named two has the same Rexx statements as routine

30Cf. 3.1 Evaluating Rexx Scripts with javax.script on page 7 above.

31The "prolog" code of a Rexx program consists of all Rexx statements starting with line one up
to, but not including the first directive. If there is no directive the prolog is the same as the
entire Rexx program.

2017-10-12 13:28:16 14/19

one, but adds a concluding RexxScript annotation ("/*@set(d1 d2 sum)*/")

which will update the respective ScriptContext Bindings attributes with the

values the Rexx context variables hold at that point in time. Upon return the

Java host would now access the attribute values from the ScriptContext

Bindings, i.e. the values as changed by the Rexx program.

The Java program "Test_03.java" in code 8 below creates a RexxScriptEngine and

fetches its default ScriptContext, then uses its ENGINE_SCOPE Bindings to store

the Rexx program's filename and uses its GLOBAL_SCOPE Bindings to store the

attributes d1 with the value 1, d2 with the value 2 and sum with the value 3. Then

the Java static method showAttributes is used to lookup the three attributes d1,

d2 and sum and display their current values.

The Rexx program "test_rexx_03.rex" in code 7 above will get evaluated and the

Rexx prolog code will lookup the attributes d1, d2 and sum in the supplied

ScriptContext and display them without changing their values in its

GLOBAL_SCOPE Bindings. Its public routines named one and two will be made

2017-10-12 13:28:16 15/19

scriptContext=arg(arg())~scriptContext -- get ScriptContext
d1=scriptContext~getAttribute("d1") -- get attribute
d2=scriptContext~getAttribute("d2") -- get attribute
sum=scriptContext~getAttribute("sum") -- get attribute
say "d1="d1", d2="d2", sum="sum

/* get attributes with Rexx script annotations */
::routine one public
 /*@get(d1 d2 sum)*/ -- get attributes
 say "d1="pp(d1)", d2="pp(d2)", sum="pp(sum)
 d1=random()
 d2=random()
 sum=d1+d2
 say "d1="pp(d1)", d2="pp(d2)", sum="pp(sum)

/* get and set attributes with Rexx script annotations */
::routine two public
 /*@get(d1 d2 sum)*/ -- get attributes
 say "d1="pp(d1)", d2="pp(d2)", sum="pp(sum)
 d1=random()
 d2=random()
 sum=d1+d2
 say "d1="pp(d1)", d2="pp(d2)", sum="pp(sum)
 say "--> ---> now updating Bindings from Rexx! <--- <--"
 /*@set(d1 d2 sum)*/ -- replace the values in the Bindings

::routine pp -- "pretty-print": enclose argument in brackets
 return "["arg(1)"]"

Code 7: "test_rexx_03.rex": Employing Rexx script annotations.

available to any Rexx program that will be evaluated in that RexxScriptEngine

instance later, such that any Rexx script can invoke the one or two routine without

a need to require "test_rexx_03.rex"32.

Next, the Java host evaluates (executes) a single line Rexx program that invokes

the public Rexx routine one from the package "test_rexx_03.rex". This single line

32Please note that this behavior is not the default ooRexx behavior! As noted above
RexxScriptEngine implements this behavior (adding all prior packages automatically to a new
Rexx package, thereby making all public routines or classes available) to match the behavior of
other script languages, especially in the context of scripts embedded in HTML. This
RexxScriptEngine feature can be turned off by the Java host by using its setter method
setAddLatestPackageDynamically(false).

2017-10-12 13:28:16 16/19

import javax.script.*;
import java.io.FileReader;

public class Test_03 // demo evaluating a Rexx script
{
 public static void main (String args[])
 {
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine rse = manager.getEngineByName("Rexx");
 try
 {
 String filename="test_rexx_03.rex"; // define the filename
 // add the filename to the engine's SimpleBindings
 ScriptContext sc=rse.getContext(); // get the default ScriptContext
 sc.setAttribute(ScriptEngine.FILENAME,filename,ScriptContext.ENGINE_SCOPE);
 sc.setAttribute("d1", "1", ScriptContext.GLOBAL_SCOPE);
 sc.setAttribute("d2", "2", ScriptContext.GLOBAL_SCOPE);
 sc.setAttribute("sum", "3", ScriptContext.GLOBAL_SCOPE);
 showAttributes(sc);
 rse.eval(new FileReader(filename), sc); // now let us execute the Rexx script

 System.out.println("\n... about to call public Rexx routine 'one':");
 // now let us execute a global Rexx routine, forward slotDir argument!
 rse.eval("call one arg(arg())");
 showAttributes(sc);

 System.out.println("\n... about to call public Rexx routine 'two':");
 // now let us execute a global Rexx routine, forward slotDir argument!
 rse.eval("call two arg(arg())");
 showAttributes(sc);
 }
 catch (Exception exc)
 {
 System.err.println(exc);
 System.exit(-1);
 }
 }
 public static void showAttributes(ScriptContext sc)
 {
 System.out.println("... d1=["+sc.getAttribute("d1")+"]"
 + ", d2=["+sc.getAttribute("d2")+"]"
 + ", sum=["+sc.getAttribute("sum")+"] ...");
 }
}

Code 8: "Test_03.java": Java host program to host "test_rexx_03.rex".

Rexx script will receive the BSF4ooRexx slot argument (always the last argument)

which will be fetched by this Rexx single line program and supplied as the only

argument to the public Rexx routine one, such that the contained ScriptContext is

made available to it as well.33 Upon return the Java program uses the static

method showAttributes to display the current (unchanged by the Rexx script)

values of the attributes d1, d2 and sum.

Lastly, the Java host evaluates (executes) another single line Rexx program that

invokes the public Rexx routine two from the package "test_rexx_03.rex". This

single line Rexx script will receive the BSF4ooRexx slot argument (always the last

argument) which will be fetched by this Rexx single line program and supplied as

the only argument to the public Rexx routine two, such that the contained

ScriptContext is made available to it as well.33 Upon return the Java program uses

the static method showAttributes to display the current (this time changed by the

Rexx script @set RexxScript annotation) values of the attributes d1, d2 and sum.

4 Roundup and Outlook

This article introduced a javax.script compliant implementation for the ooRexx

script language in the BSF4ooRexx function and class package, named

"RexxScript". It explained the fundamental concepts of the javax.script framework

which are drove the design of the BSF4ooRexx implementation.

A few nutshell examples introduce and demonstrate various Java host applications

33As mentioned above, RexxScript annotations are dependent on the existence of the
ScriptContext object as the last argument of the invoked routine or method.

2017-10-12 13:28:16 17/19

... d1=[1], d2=[2], sum=[3] ...
REXXout>d1=1, d2=2, sum=3

... about to call public Rexx routine 'one':
REXXout>d1=[1], d2=[2], sum=[3]
REXXout>d1=[591], d2=[762], sum=[1353]
... d1=[1], d2=[2], sum=[3] ...

... about to call public Rexx routine 'two':
REXXout>d1=[1], d2=[2], sum=[3]
REXXout>d1=[31], d2=[262], sum=[293]
REXXout>--> ---> now updating Bindings from Rexx! <--- <--
... d1=[31], d2=[262], sum=[293] …

Output 3: Output of running "java Java_03".

that evaluate (execute, run) Rexx scripts. The RexxScriptEngine implementation

introduces "RexxScript annotations" to ease fetching and setting attributes from

the current ScriptContext Bindings.

By default public routines and classes of evaluated (executed) Rexx scripts will be

made available to any Rexx script that gets evaluated later by the same

RexxScriptEngine, which matches the behavior of other javax.script languages,

but deviates from the default ooRexx behavior.

As each RexxScriptEngine instance will create and use a separate Rexx interpreter

instance, thorough testing of both, the RexxScriptEngine and of ooRexx will be

necessary.34

5 References

[1] JSR-223 Homepage (as of 2017-04-01): https://jcp.org/en/jsr/detail?id=223

[2] JSR-223 Specification (as of 2017-04-01):

https://jcp.org/aboutJava/communityprocess/edr/jsr223/index.html

[3] Javadocs for the Java package javax.script (as of 2017-04-01):

https://docs.oracle.com/javase/8/docs/api/javax/script/package-

summary.html

[4] Sourceforge homepage BSF4ooRexx (acronym for "bean scripting framework

– BSF – for ooRexx"), an ooRexx and Java bridge (as of 2017-04-01):

https://sourceforge.net/projects/bsf4oorex

[5] Sourceforge homepage ooRexx ("open object-oriented Rexx"), a dynamically

typed scripting language (as of 2017-04-01):

https://sourceforge.net/projects/oorexx

[6] Homepage of Java (as of 2017-04-01): http://java.com

[7] Homepage of the Apache Software Foundation (ASF) "Bean Scripting

Framework (BSF)" (as of 2017-04-01):

https://commons.apache.org/proper/commons-bsf/

[8] Download page for ooRexx 4.0 (as of 2017-04-01):

34The ooRexx interpreter has a very powerful kernel which allows any number of Rexx interpreter
instances to execute in parallel, each capable of running Rexx programs in different threads.
This particular feature has been exploited in BSF4ooRexx since the new, powerful kernel got
introduced with ooRexx 4.0. [12]

2017-10-12 13:28:16 18/19

https://sourceforge.net/projects/oorexx/files/oorexx/4.0.0/

[9] Download page for ooRexx 5.0 beta (as of 2017-04-01):

https://sourceforge.net/projects/oorexx/files/oorexx/5.0.0beta/

[10] Java Native Interface (JNI) Specifications (as of 2017-04-01):

https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.

html

[11] Flatscher R.G.: "The 2009 Edition of BSF4Rexx", in: Proceedings of the

“The 2009 International Rexx Symposium”, Chilworth, England, Great

Britain, May 18th – May 21st 2009. URL (as of 2017-04-01):

http://wi.wu.ac.at/rgf/rexx/orx20/2009_orx20_BSF4ooRexx-20091031-

article.pdf

[12] Flatscher R.G.: "Creating ooRexx Interpreter Instances from Java and

NetRexx", in: Proceedings of the "The 2012 International Rexx

Symposium", Raleigh, North Carolina, U.S.A., May 14th – 16th, 2012. URL

(as of 2017-04-01): http://wi.wu.ac.at/rgf/rexx/orx23/201202-

CreatingOoRexxInterpreterInstances-article.pdf

2017-10-12 13:28:16 19/19

	1 Introduction
	2 The javax.script Package
	3 The RexxScript Implementation
	3.1 Evaluating Rexx Scripts with javax.script
	3.2 Invoking a Rexx Script from a Java Host
	3.3 Interacting with a ScriptContext from Rexx
	3.4 Rexx Script Annotations

	4 Roundup and Outlook
	5 References
	[1] JSR-223 Homepage (as of 2017-04-01): https://jcp.org/en/jsr/detail?id=223
	[2] JSR-223 Specification (as of 2017-04-01): https://jcp.org/aboutJava/communityprocess/edr/jsr223/index.html
	[3] Javadocs for the Java package javax.script (as of 2017-04-01): https://docs.oracle.com/javase/8/docs/api/javax/script/package-summary.html
	[4] Sourceforge homepage BSF4ooRexx (acronym for "bean scripting framework – BSF – for ooRexx"), an ooRexx and Java bridge (as of 2017-04-01): https://sourceforge.net/projects/bsf4oorex
	[5] Sourceforge homepage ooRexx ("open object-oriented Rexx"), a dynamically typed scripting language (as of 2017-04-01): https://sourceforge.net/projects/oorexx
	[6] Homepage of Java (as of 2017-04-01): http://java.com
	[7] Homepage of the Apache Software Foundation (ASF) "Bean Scripting Framework (BSF)" (as of 2017-04-01): https://commons.apache.org/proper/commons-bsf/
	[8] Download page for ooRexx 4.0 (as of 2017-04-01): https://sourceforge.net/projects/oorexx/files/oorexx/4.0.0/
	[9] Download page for ooRexx 5.0 beta (as of 2017-04-01): https://sourceforge.net/projects/oorexx/files/oorexx/5.0.0beta/
	[10] Java Native Interface (JNI) Specifications (as of 2017-04-01): https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html
	[11] Flatscher R.G.: "The 2009 Edition of BSF4Rexx", in: Proceedings of the “The 2009 International Rexx Symposium”, Chilworth, England, Great Britain, May 18th – May 21st 2009. URL (as of 2017-04-01): http://wi.wu.ac.at/rgf/rexx/orx20/2009_orx20_BSF4ooRexx-20091031-article.pdf
	[12] Flatscher R.G.: "Creating ooRexx Interpreter Instances from Java and NetRexx", in: Proceedings of the "The 2012 International Rexx Symposium", Raleigh, North Carolina, U.S.A., May 14th – 16th, 2012. URL (as of 2017-04-01): http://wi.wu.ac.at/rgf/rexx/orx23/201202-CreatingOoRexxInterpreterInstances-article.pdf

